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Abstract

Linear and weakly nonlinear properties of Rayleigh–Benard convection in rotating fluids are investigated. Linear stability analysis is
studied to investigate analytically the effect of Coriolis force on gravity-driven convection for idealised stress-free boundary conditions.
We have derived a nonlinear one-dimensional Landau–Ginzburg equation with real coefficients near the onset of stationary convection
at the supercritical pitchfork bifurcation. A coupled Landau–Ginzburg type equations with complex coefficients near the onset of oscil-
latory convection at the supercritical Hopf bifurcation are derived and discussed the stability regions of travelling and standing waves.
� 2007 Published by Elsevier Ltd.

Keywords: Stationary and oscillatory convection; Coriolis force; Bifurcation points; Landau–Ginzburg equation; Travelling and standing wave conve-
ction
1. Introduction

Rayleigh–Benard convection with rotation about a verti-
cal axis is an interesting hydrodynamic system since it com-
bines the elements of thermal buoyancy and rotation
induced Coriolis and centrifugal forces. This is a simple
model that contains the fundamental forces that control
the atmospheric and oceanic circulation. The importance
of Rayleigh–Benard convection with rotation in atmo-
spheric and oceanic flow has enviced a significant theoreti-
cal and experimental interest in the problem [2,3,1,10].
Addition of Coriolis forces on the Rayleigh–Benard convec-
tion induces another control parameter into the problem,
namely the Taylor number which is a measure of rotation
rate. The multiplicity of control parameters makes this sys-
tem an interesting one for the study of hydrodynamic stabil-
ity, bifurcation and turbulence [7]. Chandrasekhar [4]
derived the critical Rayleigh number as a function of Taylor
number. For theoretical simplicity, he considered an infinite
layer of fluid. But in many practical situations as in a labo-
ratory experiment, there are vertical boundaries on side
0017-9310/$ - see front matter � 2007 Published by Elsevier Ltd.
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walls and the horizontal dimension of the convection cells
is comparable to their vertical depths. It was also found that
the experimental observations were not in line with theoret-
ical predictions made by Chandrasekhar. Davies-Jones and
Oilman [5] found that for certain aspect rations (width to
depth ratios) and large enough Taylor number, the critical
Rayleigh number for steady convection is less than that
for infinite case even though the system is more constrained.
Khiri [6] has considered the problem of Coriolis effect on
convection for a low Prandtl number for stress-free bound-
ary conditions (even though he mentions as rigid–rigid
boundary condition). In the next section, we have written
the basic equations which describe the Rayleigh–Benard
convection with rotation. In Section 3, we revisit Chandra-
sekhar [4] and carry out a linear stability analysis and iden-
tify certain parameter regimes for the onset of stationary
and oscillatory convection. In Section 4, we derive an ampli-
tude equation, which is Landau–Ginzburg equation with
real coefficients, near the onset of stationary convection at
supercritical pitchfork bifurcation [8]. In Section 5, we
derive two nonlinear one-dimensional time-dependent cou-
pled Landau–Ginzburg type equation in complex ampli-
tudes A1RðX ; s; T Þ;A1LðX ; s; T Þ with complex coefficients
near the onset of oscillatory convection at supercritical
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Hopf bifurcation. Here A1RðX ; s; T Þ; A1LðX ; s; T Þ stands for
amplitudes of right hand and left hand travelling waves.
Following Matthews and Rucklidge [9], we have dropped
slow space dependence and obtained two ODE’s in
A1RðT Þ and A1LðT Þ with complex coefficients and discussed
the stability regions of travelling and standing waves. In
Section 6, we write conclusions of our paper.

2. Basic equations

Let us consider an infinite horizontal layer of fluid which
is kept rotating at a constant angular velocity bX ¼ Xêz and
is also heated from below. We use a cartesian system of co-
ordinates whose dimensionless horizontal co-ordinates x; y
and vertical co-ordinate z are scaled on d, the depth of the
fluid layer. The velocity ~V ðu; v;wÞ, the temperature h, time t

and pressure p are nondimensionalised by j
d ; bd; d2

j and
q0j

2d�2. Here j is thermal diffusivity, m is viscosity, b is
adverse temperature gradient and q0 is the density. The
dimensionless equations for a rotating Rayleigh–Benard
system in the Oberbeck–Boussinesq approximation are:

r � ~V ¼ 0; ð1Þ

1

Pr
o~V
ot
þ ð~V � rÞ~V

" #
¼ �r p � TaPr

8
jêz �~rj

� �
þr2~V þ Rhêz þ Ta

1
2ð~V � êzÞ; ð2Þ

oh
ot
þ ð~V � rÞh ¼ wþr2h; ð3Þ

where êz is the unit vector along the axis of rotation. The
dimensionless numbers required for the description of the
motion are: Rayleigh number R ¼ gabd4

jm , Prandtl number
Pr ¼ m

j and Taylor number Ta ¼ 4X2d4

m2 . Now it is convenient
to reduce the basic Eqs. (1)–(3) into a single equation. To
do this, we take curl of Eq. (2) and obtain

1

Pr
o

ot
�r2

� �
~x� Rr� hêzð Þ � Ta

1
2r� ~V � êz

� �
¼ � 1

Pr
r� ½ð~V � rÞ~V �; ð4Þ

where ~x ¼ r� ~V is the vorticity and r2 ¼ o2

ox2 þ o2

oy2 þ o2

oz2

The curl of Eq. (4), in turn, after use of Eq. (1) gives

1

Pr
o

ot
�r2

� �
r2~V � R r2 hêzð Þ � r oh

oz

� �� �
þ Ta

1
2
o~x
oz

¼ 1

Pr
r� ½r � ð~V � rÞ~V �
� 	

: ð5Þ

The z-component of Eqs. (4) and (5) are

1

Pr
o

ot
�r2

� �
xz � Ta

1
2
ow
oz
¼ � 1

Pr
~V � r
� �

xz � ~x � rð Þw

 �

;

ð6Þ
1

Pr
o

ot
�r2

� �
r2w� Rr2

hhþ Ta
1
2
oxz

oz

¼ 1

Pr
êz: r� ~V � r

� �
~x


 �
�r� ½ð~x � rÞ~V �

� 	
; ð7Þ
where xz and w are the z-components of vorticity and
velocity, respectively and r2

h ¼ o2

ox2 þ o2

oy2 is a horizontal
Laplacian operator. Eliminating h and xz from the linear
part of Eqs. (3), (6) and (7), we get

Lw ¼N; ð8Þ

where

L ¼ 1

Pr
o

ot
�r2

� �2
o

ot
�r2

� �
r2 þ Ta

o

ot
�r2

� �
o2

oz2

� Rr2
h

1

Pr
o

ot
�r2

� �
; ð9Þ

and

N ¼ �R
1

Pr
o

ot
�r2

� �
r2

h
~V :r
� �

h

þ Ta
1
2

Pr
o

ot
�r2

� �
o

oz
~V � r
� �

xz � ~x � rð Þw

 �

� 1

Pr
1

Pr
o

ot
�r2

� �
o

ot
�r2

� �
êz � r � ~V � r

� �
~x


 �
þ 1

Pr
1

Pr
o

ot
�r2

� �
o

ot
�r2

� �
êz � r � ½ð~x � rÞ~V �:

ð10Þ

Boundary conditions:
The fluid is confined between the planes z ¼ 0; z ¼ 1 and

is rotating about z-axis. For free–free (stress-free) bound-
ary conditions, we have

h ¼ 0; w ¼ 0;
owz

oz
¼ 0 and

o
2w

oz2
¼ 0;

on z ¼ 0; z ¼ 1 for all x; y;

and for rigid–rigid boundary conditions, we have

h ¼ 0; w ¼ 0; wz ¼ 0 and
ow
oz
¼ 0

on z ¼ 0; z ¼ 1 for all x; y:

In our paper, we use stress-free boundary conditions.

3. Linear stability analysis

We perform the linear stability analysis of the problem
by substituting

w ¼ W ðzÞeiqxxþpt; ð11Þ

into linearized version of Eq. (8) viz.

Lw ¼ 0;

and obtaining an equation�
ðD2 � q2ÞðD2 � q2 � pÞ D2 � q2 � p

Pr

� 
2

þTaD2ðD2 � q2 � pÞþRq2 D2 � q2 � p
Pr

� 
�
W ðzÞ ¼ 0;

ð12Þ
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where

q2 ¼ q2
x and D ¼ d

dz
:

We consider only idealized boundary conditions (free–free
boundary conditions). Hence, W and all its even deriva-
tives vanish at z = 0 and z = 1. Substituting W ðzÞ ¼ sin pz
and p ¼ ix in Eq. (12), we get

R ¼ 1

q2
½A1 þ ixðA2x

2 þ A3Þ�; ð13Þ

where

A1 ¼ d2 d4 � x2

Pr

� �
þ

Tap2 d4 þ x2

Pr

� 

d4 þ x2

Pr2

; ð14aÞ

A2 ¼
d2

Pr2
1þ 1

Pr

� �
; ð14bÞ

A3 ¼ d6 1þ 1

Pr

� �
þ Tap2 1� 1

Pr

� �
; ð14cÞ

and d2 ¼ p2 þ q2. From relation Eq. (14b), A2 > 0.
(a) Stationary convection (x ¼ 0):
Substituting x = 0 in Eq. (13), we get

Rs ¼
d6

s þ Tap2

q2
s

; ð15Þ

where d2
s ¼ p2 þ q2

s . Here Rs is the value of the Rayleigh
number for stationary convection. The critical value of
Rs is obtained for q ¼ qsc, where

2
qsc

p

� 
6

þ 3
qsc

p

� 
4

¼ 1þ Ta
p4
: ð16Þ

Threshold for the onset of stationary convection is given by
Eq. (15), with q ¼ qsc. Thus

Rsc ¼
d6

sc þ Tap2

q2
sc

; ð17Þ

where d2
sc ¼ p2 þ q2

sc. For Ta
p4 � 1 (for large Taylor number),

the required root of Eq. (16) becomes

qsc

p

� 

’ Ta

2p4

� �1
6

:

The corresponding asymptotic values of qsc and Rsc are

qsc ’
p2Ta

2

� �1
6

; ð18aÞ

Rsc ’ 3p4 Ta
2p4

� �2
3

: ð18bÞ

In the free–free boundary conditions we have proved that
for large Taylor number

Rsc / Ta
2
3 and qsc / Ta

1
6: ð19Þ

This is also true for rigid–rigid and rigid–free boundary
conditions.
(b) Oscillatory convection ðx2 > 0Þ:
For the oscillatory convection ðx 6¼ 0Þ and from Eq.

(13), R will be complex. But the physical meaning of R

requires it to be real. The condition that R is real implies
that imaginary part of Eq. (13) is zero, i.e.,

A2x
2 þ A3 ¼ 0; ð20Þ

where A2;A3 are given by Eqs. (14b) and (14c). For oscilla-
tory convection x2 ¼ � A3

A2
> 0, i.e.,

x2 ¼ Pr2

d2
0ð1þ PrÞ

½Tap2ð1� PrÞ � d6
0ð1þ PrÞ�; ð21Þ

where d2
0 ¼ p2 þ q2

0. Substituting x2 from Eq. (21) into the
real part of Eq. (13), we get

R0 ¼
2ð1þ PrÞ

q2
d6

0 þ
Tap2Pr2

ð1þ PrÞ2

" #
: ð22Þ

A necessary condition for x2 > 0 is Pr < 1. However, this is
not sufficient condition and one must have in addition

Ta >
ð1þ PrÞd6

0

p2ð1� PrÞ

Ta ¼ Tac ¼
d6

cð1þ PrÞ
p2ð1� PrÞ ; q ¼ qc

ð23Þ

is a solution of A3ðTacÞ ¼ 0 and corresponds to a Takens–
Bogdanov bifurcation point. At Takens–Bogdanov bifur-
cation point q0 ¼ qs ¼ qc and A3ðqcÞ ¼ 0. We note from
real part of Eq. (22) that if x2 > 0 then R0ðq0Þ will be less
than Rsðq0Þ and not RsðqsÞ given by Eq. (15), which corre-
sponds to onset of stationary convection. However, at Ta-
kens–Bogdanov bifurcation point

R0ðq0Þ ¼ RsðqsÞ ¼ RcðqcÞ; q0 ¼ qs ¼ qc

and x2 ¼ 0 is a double zero at Ta ¼ TacðqcÞ. The Takens–
Bogdanov bifurcation point occurs where neutral curves
for Hopf and pitchfork bifurcation meet and only a single
wave number is present viz. q0 ¼ qs ¼ qc. If qc > qsc then
for all q < qc the first instability to set in is an oscillatory
instability.

The critical wave number corresponding to the onset of
oscillatory convection for given parameters Pr and Ta is
obtained for q ¼ qoc from the following equation

2
qoc

p

� 
6

þ 3
qoc

p

� 
4

¼ 1þ TaPr2

p4ð1þ PrÞ2
: ð24Þ

For large Taylor number, the required root of Eq. (24)
becomes

qoc

p
¼ TaPr2

2p4ð1þ PrÞ2

 !1
6

:

The corresponding asymptotic behavior of qoc and Roc for
large Taylor number are (Chandrasekhar [4])



S.G. Tagare et al. / International Journal of Heat and Mass Transfer 51 (2008) 1168–1178 1171
qoc ’
TaPr2p2

2ð1þ PrÞ2

 !1
6

; ð25aÞ

Roc ’ 2p4ð1þ PrÞ 3
TaPr2

2p4ð1þ PrÞ2

 !2
3

24 35: ð25bÞ

From Eqs. (18b) and (25b), Roc ! Rsc as Ta!1 implies
that for large Taylor number

2Pr
4
3

ð1þ PrÞ
1
3

¼ 1: ð26Þ

Root of Eq. (26) is (Chandrasekhar [4]) Pr ¼ Prc ¼ 0:67659.
Thus RocðqocÞ ! RscðqscÞ at Pr ¼ Prc. From the monotonic
dependence of qoc and qsc on Ta, we may conclude that
for Pr > Prc;Roc > Rsc for all Ta. Hence for 1 > Pr > Prc,
instability will always manifest itself, first as stationary
convection. For Pr < Prc, there exist a Ta(Pr) such that
for Ta 6 TaðPrÞ the onset of instability will be stationary
convection at pitchfork bifurcation while for Ta > TaðPrÞ
Fig. 1. Marginal stability curves (stationary convection-solid lines, oscillato
(b) Ta ¼ 1012, (c) Ta ¼ 1016, (d) Ta ¼ 1020.
it will be oscillatory convection at Hopf bifurcation. Ta(Pr)
is a function of Prandtl number Pr and for Ta ¼ TaðPrÞ

RctðqocÞ ¼ RscðqscÞ but qoc 6¼ qsc: ð27Þ

This point is known as codimension two bifurcation point
and is intersection between a Hopf and pitchfork bifurca-
tion with distinct wave numbers. Thus Takens–Bogdanov
bifurcation point and codimension two bifurcation point
are different. There is no simple formula to give Ta(Pr)
as a function of Pr.

In Figs. 1a–d, solid line represent stationary convection
(pitchfork bifurcation) and dotted line denotes oscillatory
convection (Hopf bifurcation) which are plotted in ðq;RÞ-
plane. The value of x2 decreases on dotted line when q

increases and x2 takes zero value at the intersection of solid
and dotted line.

In Figs. 1a–d, we have shown the effect of Taylor num-
ber Ta, over the onset of both stationary and oscillatory
convection. From these figures we can say that when Ta

increases, then the onset of both stationary and oscillatory
convection will increase. This implies that rotation rate
ry convection-dotted lines) are plotted for Pr ¼ 0:5, and (a) Ta ¼ 106,



1172 S.G. Tagare et al. / International Journal of Heat and Mass Transfer 51 (2008) 1168–1178
inhibits the onset of convection. This result is true for other
parameter Pr also. In Figs. 1a–d, we can see three types of
bifurcations like pitchfork bifurcation, Hopf bifurcation,
Takens–Bogdanov bifurcation point, (the intersection
point of solid and dotted line).
4. Two-dimensional Landau–Ginzburg equation at the onset

of stationary convection

The existence of threshold and the cellular structure
(critical wave number) for a fixed Taylor number Ta are
main characteristics of the stationary convection in a rotat-
ing fluid. Here, we consider the region at supercritical
pitchfork bifurcation ðR > RscÞ. We write the solution of
Eqs. (1)–(3) in the power series of � given as follows

f ¼ �f0 þ �2f1 þ �3f2 þ � � � ; ð28Þ

where

f ¼ f ðu; v;w;xx;xy ;xz; hÞ

with the first approximation given by the eigenvector of the
linearized problem:

u0 ¼
ip
qsc

½AðX ; Y ; T Þeiqscx cos pz� c:c:�;

v0 ¼
�ipTa

1
2

qscd
2
sc

½AðX ; Y ; T Þeiqscx cos pz� c:c:�;

w0 ¼ AðX ; Y ; T Þeiqscx sin pzþ c:c:;

xx0
¼ �ip2Ta

1
2

qscd
2
sc

AðX ; Y ; T Þeiqscx sin pz� c:c:

 �

;

xy0
¼ �id2

sc

qsc

AðX ; Y ; T Þeiqscx sin pz� c:c:

 �

;

xz0
¼ pTa

1
2

d2
sc

½AðX ; Y ; T Þeiqscx cos pzþ c:c:�;

h0 ¼
1

d2
sc

½AðX ; Y ; T Þeiqscx sin pzþ c:c:�:

ð29Þ

The amplitude AðX ; Y ; T Þ is allowed to depend on slow
space and time variables

X ¼ �x; Y ¼ �1
2y; T ¼ �2t; z ¼ z: ð30Þ

We expand the linear operator L and nonlinear operator
N as the following power series

L ¼L0 þ �L1 þ �2L2 þ � � � ; ð31aÞ
N ¼ �2N0 þ �3N1 þ � � � ð31bÞ

Substituting Eqs. (31a), (31b) and (28) into Eq. (8), we get
by equating the coefficients of �; �2; �3

L0w0 ¼ 0; ð32aÞ
L0w1 þL1w0 ¼N0; ð32bÞ
L0w2 þL1w1 þL2w0 ¼N1; ð32cÞ
where

L0¼�r2 r6þTa
o2

oz2
�Rsc

o2

ox2

� �
; ð33aÞ

L1¼�2
o2

oxoX
þ1

2

o2

oY 2

� �
4r6þTa

o2

oz2
�Rsc 2

o2

ox2
þ o2

oz2

� �� �
;

ð33bÞ

L2¼
o

oT
1þ 2

Pr

� �
r6þTa

o2

oz2
�Rsc

Pr
o2

ox2

� �

� o
2

oX 2
4r6þTa

o
2

oz2
�Rsc 2

o
2

ox2
þ o

2

oz2

� �� �

þ o2

oxoX
þ1

2

o2

oY 2

� �2

�24r4þ4Rsc

� �
þRsc

o2

ox2
r2: ð33cÞ

Eq. (32a) gives the critical Rayleigh number for the onset
of stationary convection

Rsc ¼
d6

sc þ Tap2

q2
sc

:

Here qsc is given by Eq. (16), this implies that

L1w0 ¼ 0:

Hence Eq. (32b) becomes

L0w1 ¼N0:

Substituting the zeroth order solutions Eq. (29) into N0,
we find that N0 ¼ 0, hence w1 ¼ 0. From equation of con-
tinuity we find that u1 ¼ 0. The relevant equations for xz1

and h1, respectively are

1

Pr
o

ot
�r2

� �
xzx ¼ Ta

1
2
ow1

oz
� 1

Pr
~V 0 � r
� �

xz0
� ~x0 � rð Þw0


 �
;

ð34aÞ

o

ot
�r2

� �
h1�w1� ~V 0 � r

� �
h0: ð34bÞ

Substituting zeroth order approximations from Eq. (30)
into Eqs. (34a) and (34b) and using w1 ¼ 0, we get

xz1
¼ Ta

1
2p2

2Prq2
scd

2
sc

½A2e2iqscx þ c:c:�;

xx1
¼ xy1

¼ 0;

h1 ¼
�1

2pd2
sc

jAj2 sin 2pz;

v1 ¼
�iTa

1
2p2

4Prq3
scd

2
sc

½A2e2iqscx � c:c:�:

ð35Þ

The solvability criterion of Eq. (32c) gives us the amplitude
equation

k0

oA
oT
� k1

o

oX
� i

2qsc

o2

oY 2

� �2

A� k2Aþ k3jAj2A ¼ 0; ð36Þ
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where

k0 ¼ 1þ 1

Pr

� �
d6

sc þ 1� 1

Pr

� �
p2Ta;

k1 ¼ 4 d4
sc 5q2

sc � p2
� �

� Tap2

 �

;

k2 ¼ Rscq2
scd

2
sc;

k3 ¼
Rscq2

sc

2
� Ta

1
2p4

Prq2
sc

:

ð37Þ

Eq. (36) is time dependent non-linear two-dimensional
Landau–Ginzburg equation describing the effect of rota-
tion on Rayleigh–Benard problem. We notice that k1; k2

are always positive and k3 is positive if

Rsc >
2p4Ta

1
2

Prq4
sc

: ð38Þ

At k3 ¼ 0, we get tricritical bifurcation point. The pitch-
fork bifurcation is supercritical if k3 > 0 and subcritical if
k3 < 0 (see Fig. 2). k0 ¼ 0 if Ta ¼ Tac and k0 > 0 if
Ta < Tac. Dropping time dependence and Y-dependence
from Eq. (36), we get

d2A

dX 2
þ k2

k1

A 1� k3

k2

jAj2
� �

¼ 0: ð39Þ

Here, we assume that, condition Eq. (38) is satisfied so that
k2 and k3 are always positive. Since k1 > 0, the solution of
the Eq. (39) is given by

AðX Þ ¼ A0 tanh
X
K

� �
;

where

A0 ¼

ffiffiffiffiffi
k2

k3

s
and K ¼

ffiffiffiffiffiffiffi
2k1

k2

s
: ð40Þ
Fig. 2. In k3 < 0 region, the pitchfork bifurcation is subcritical and in
k3 > 0 region the pitchfork bifurcation is supercritical. k3 ¼ 0 gives
tricritical bifurcation point.
4.1. Long wave-length instabilities

A secondary instability arises from a neutral mode asso-
ciated with a symmetry of the governing equations broken
by the primary instabilities.

In order to study the properties of a structure with a
given phase winding number dqs ¼ q� qsc, we substitute

AðX ; Y ; T Þ ¼ eAðX ; Y ; T ÞeidqsX ðstationary solutionsÞ;

into Eq. (36) and we obtain

k0

oeA
oT
¼ ðk2 � k1dq2

s Þ~Aþ 2ik1dqs

o

oX
� i

2qsc

o
2

oY 2

� �eA
þ k1

o

oX
� i

2qsc

o2

oY 2

� �2eA � k3jeAj2eA
¼ 0: ð41Þ

The steady state uniform solution of Eq. (41) is

eA ¼ eA0 ¼
k2 � k1dq2

s

� �
k3

� �1
2

: ð42Þ

Let ~uðX ; Y ; T Þ þ i~vðX ; Y ; T Þ be an infinitesimal perturbation
from a uniform steady state solution eA0 given by Eq. (42).
Now substituting

eA ¼ ðk2 � k1dq2
s Þ

k3

� �
þ ~uþ i~v

into Eq. (41) and equating real and imaginary parts, we
obtain

k0

o~u
oT
¼ �2 k2 � k1dq2

s

� �
þ k1

o
2

oX 2
þ k1dqs

qsc

o
2

oY 2
� k1

4q2
sc

o
4

oY 4

� �
~u

� 2k1dqs �
k1

qsc

o2

oY 2

� �
o~v
oX

; ð43aÞ

k0

o~v
oT
¼ 2k1dqs �

k1

qsc

o2

oY 2

� �
o~u
oX

þ k1

o2

oX 2
þ dqs

qsc

o2

oY 2
� 1

4q2
sc

o4

oY 4

� �
~v: ð43bÞ

We analyze Eqs. (43a) and (43b) by using normal modes of
the form

~u ¼ UeðSTÞ cosðqX X Þ cosðqY Y Þ;
~v ¼ V eðSTÞ sinðqX X Þ cosðqY Y Þ:

ð44Þ

Putting solutions Eq. (44) into Eqs. (43a) and (43b) we get,

k0Sþ 2 k2 � k1dq2
s

� �
þ k1q2

X þ
k1dqs

qsc

q2
Y þ

k1

4q2
sc

q4
Y

� �
U

þ 2dqsþ
q2

Y

qsc

� �
k1qX V ¼ 0; ð45aÞ

k1qX 2dqsþ
q2

Y

qsc

� �
U þ k0Sþ k1q2

X þ
k1dqs

qsc

q2
Y þ

k1

4q2
sc

q4
Y

� �
V ¼ 0:

ð45bÞ



Fig. 3. Eckhuas instability (E) exists between the two lines dq2
s ¼ k2=3k1

and dq2
s ¼ k2=k1. Zigzag instability (Z) exists in the dqs < 0 region. Stable

rolls (S) exist in the dqs > 0 region of inner curve.
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On solving Eqs. (45a) and (45b) we get,

k2
0S2 þ 2S 2k0 k2 � k1dq2

s

� �
þ k0k1q2

X þ
k0k1

qsc

q2
Y dqs þ

k0k1

4q2
sc

q4
Y

� �
þ 2 k2 � k1dq2

s

� �
þ k1q2

X þ
k1

qsc

q2
Y dqs þ

k1

4q2
sc

q4
Y

� �
� k1q2

X þ
k2dqs

qsc

q2
Y þ

k1

4q2
sc

q4
Y

� �
� q2

X 2k1dqs þ
k1

qsc

q2
Y

� �2

¼ 0; ð46Þ

whose roots (S±) are real. Here (S±) defined as

Sð�Þ ¼ � 1

k2
0

8<: 2k0ðk2 � k1dq2
s Þ þ k0k1q2

X þ
k0k1

qsc

q2
Y dqs þ

k0k1

4q2
sc

q4
Y

� �

� 2k0 k2 � k1dq2
s

� �� �2 þ k2
1q2

X 2dqs þ
q2

Y

qsc

� �2
" #1

2

9=;;
ð47Þ

solution S(�) is clearly negative, thus the corresponding
mode is stable and if S(+) is positive then rolls can be
unstable. Symmetry considerations help us to restrict the
study of S(+) to a domain ðqX P 0; qY P 0Þ.

(a) Longitudinal perturbations and Eckhaus instability:
Inserting qY ¼ 0 into Eq. (46); we get

k2
0S2 þ 2Sð2k0ðk2 � k1dq2

s Þ þ k0k1q2
X Þ

þ k1q2
X ½2ðk2 � 3k1dq2

s Þ þ q2
X � ¼ 0:

Since the roots are real and their sum is always negative,
the pattern is stable as long as both roots are negative,
i.e., their product is positive. The cell pattern becomes
unstable when the product is negative, i.e., when

q2
X P 2 dq2

s �
k2

k1

� �
and q2

X 6 2ð3k1dq2
s � k2Þ;

for this requires
ffiffiffiffiffi
k2

3k1

q
6 jdqsj 6

ffiffiffi
k2

k1

q
; this condition defines

the domain of the Eckhaus instability. The above condition
implies that the most unstable wave vector tends to zero,

when jdqsj !
ffiffiffi
k2

k1

q
.

(b) Transverse perturbations and zigzag instability:
Let us consider qX ¼ 0 into Eq. (46), we get

k2
0S2þ2S 2k0 k2�k1dq2

s

� �
þk0k1

qsc

q2
Y dqsþ

k0k1

4q2
sc

q4
Y

� �
þ 2 k2�k1dq2

s

� �
þ k1

qsc

q2
Y dqsþ

k1

4q2
sc

q4
Y

� �
dqs

qsc

þ q2
Y

4q2
sc

� �
k1q2

Y ¼ 0:

The two eigen modes are uncoupled and we have S(�),

Sð�Þ ¼ �2 k2 � k1dq2
s

� �
� k1

qsc

q2
Y dqs �

k1

4q2
sc

q4
Y < 0;

for one of them. The other is amplified when

SðþÞ ¼ �k1q2
Y dqs þ

q2
Y

4qsc

� �
> 0:
This implies that dqs < 0, the above condition defines the
domain of the zigzag instability. Since k1 > 0, we get
jdqsj > q2

Y =4qsc.
Since from Eq. (37), k1 and k2 are always positive. Thus

the curves dq2
s ¼ k2=3k1 and dq2

s ¼ k2=k1 will not enter to
the center. The regions of Eckhaus instability and zigzag
instability increases when Taylor number increases (see
Fig. 3).

5. Oscillatory convection at the supercritical Hopf

bifurcation

The existence of a threshold (critical value of Rayleigh
number for the onset of oscillatory convection R ¼ Roc)
and a cellular structure (critical wave number q ¼ qoc)
and Taylor number Ta are main characteristics of the oscil-
latory convection in the rotating fluid. In this section, we
treat region near the onset of oscillatory convection. Here,
the axis of the cylindrical rolls is taken as y-axis, so that
y-dependence disappears from equation Lw ¼N. The
z-dependence contained entirely in sin and cos functions
which ensure that the free–free boundary conditions are
satisfied. The purpose of this section is to derive coupled
one dimensional nonlinear time dependent Landau–Ginz-
burg type equations near the onset of oscillatory convec-
tion at supercritical Hopf bifurcation. We introduce � as

�2 ¼ R� Roc

Roc

� 1: ð48Þ

We assume that

w0 ¼ ½A1LeiðxoctþqocxÞ þ A1Reiðxoct�qocxÞ þ c:c:� sin pz;

is a solution to linearized equation Lw ¼ 0, which satisfies
free–free boundary conditions. Hear A1L denotes the ampli-
tude of left travelling of the roll and A1R denotes the ampli-
tude of right travelling of the roll, which are dependent on
slow space and time variables
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X ¼ �x; s ¼ �t; T ¼ �2t; ð49Þ
and assume that A1L ¼ A1LðX ; s; T Þ;A1R ¼ A1RðX ; s; T Þ. The
differential operators can be expressed as

o

ox
! o

ox
þ � o

oX
;

o

ot
! o

ot
þ � o

os
þ �2 o

oT
:

ð50Þ
The solution of basic equations can be sought as power ser-
ies in �,

f ¼ �f0 þ �2f1 þ �3f2 þ � � � ;
where f ¼ f ðu; v;w;xx;xy ;xz; hÞ with the first approxima-
tion is given by eigenvector of the linearized problem:

u0 ¼
ip
qoc

½A1LeiðxoctþqocxÞ � A1ReiðxoctþqocxÞ � c:c:� cos pz;

v0 ¼
�Ta

1
2ip

qoc

A1Lei xoctþqocxð Þ

d2
oc þ ixoc

Pr

� A1Reiðxoct�qocxÞ

d2
oc þ ixoc

Pr

� c:c:

" #
cos pz;

xx0
¼ �Ta

1
2ip2

qoc

A1Lei xoctþqocxð Þ

d2
oc þ ixoc

Pr

� A1Rei xoctþqocxð Þ

d2
oc þ ixoc

Pr

� c:c:

" #
sin pz;

xy0
¼ �id2

oc

qoc

A1Lei xoctþqocxð Þ � A1Rei xoctþqocxð Þ � c:c:

 �

sin pz;

xz0
¼ Ta

1
2p

A1Lei xoctþqocxð Þ

d2
oc þ ixoc

Pr

� A1Reiðxoct�qocxÞ

d2
oc þ ixoc

Pr

� c:c:

" #
cos pz;

h0 ¼
A1Lei xoctþqocxð Þ

d2
oc þ ixoc

þ A1Rei xoctþqocxð Þ

d2
oc þ ixoc

þ c:c:

" #
sin pz;

ð51Þ
where d2
oc ¼ p2 þ q2

oc. We expand the linear operator L and
nonlinear term N as the following power series

L ¼L0 þ �L1 þ �2L2 þ � � � ð52aÞ
N ¼ �2N0 þ �3N1 þ � � � ð52bÞ
Substituting Eqs. (28) and (50) into Lw ¼N, for each or-
der of �, we get

L0w0 ¼ 0; ð53aÞ
L0w1 þL1w0 ¼N0; ð53bÞ
L0w2 þL1w1 þL2w0 ¼N1: ð53cÞ
Here

L0 ¼
o

ot
�r2

� �
1

Pr
o

ot
�r2

� �2

r2�Roc

o
2

ox2

1

Pr
o

ot
�r2

� �
þTa

o2

oz2

o

ot
�r2

� �
; ð54aÞ
L1 ¼
o

os

(
2

Pr
r2 o

ot
�r2

� �
1

Pr
o

ot
�r2

� �
�Roc

Pr
o2

ox2

þTa
o2

oz2
þr2 1

Pr
o

ot
�r2

� �2
)

þ2
o2

oxoX
1

Pr
o

ot
�r2

� �2
o

ot
�r2

� �(

�2
1

Pr
o

ot
�r2

� �
o

ot
�r2

� �
r2� 1

Pr
o

ot
�r2

� �2

r2

�Ta
o2

oz2
�Roc

1

Pr
o

ot
�r2

� �
þRoc

o2

ox2

)
; ð54bÞ

L2 ¼
o

oT

"
2

Pr
1

Pr
o

ot
�r2

� �
o

ot
�r2

� �
r2

þ 1

Pr
o

ot
�r2

� �2

r2�Roc

Pr
o2

ox2
þTa

o2

oz2

#

þ4
o4

ox2oX 2

"
2

1

Pr
o

ot
�r2

� �
r2þr2 o

ot
�r2

� �

� 1

Pr
o

ot
�r2

� �2

�2
1

Pr
o

ot
�r2

� �
o

ot
�r2

� �
þRoc

#

þ o2

oX 2

"
1

Pr
o

ot
�r2

� �2
o

ot
�r2

� �
�2

1

Pr
o

ot
�r2

� �

� o

ot
�r2

� �
r2� 1

Pr
o

ot
�r2

� �2

r2

�Ta
o2

oz2
�Roc

1

Pr
o

ot
�r2

� �
þRoc

o2

ox2

#

þ2
o2

oxoXos

"
1

Pr
o

ot
�r2

� �2

þ 2

Pr
o

ot
�r2

� �
1

Pr
o

ot
�r2

� �

� 2

Pr
r2 o

ot
�r2

� �
�Roc

Pr
�2 1þ 1

Pr

� �
r2 1

Pr
o

ot
�r2

� �#

þ o2

os2
r2 1

Pr2

o

ot
�r2

� �
þ 2

Pr
1

Pr
o

ot
�r2

� �� �
�Roc

o2

ox2

1

Pr
o

ot
�r2

� �
: ð54cÞ

Eq. (53a) is a linear problem. We get critical Rayleigh num-
ber for the onset of oscillatory convection by using the zer-
oth order solution w0 in Eq. (53a). At Oð�2Þ;N0 ¼ 0 and
Lw0 ¼ 0 gives

oA1L

os
� vg

oA1L

oX
¼ 0 and

oA1R

os
þ vg

oA1R

oX
¼ 0; ð55Þ

where vg ¼ ðoxoq
Þq¼qoc

is the group velocity and is real. Hence
from Eq. (53b), we get wi ¼ 0. From equation of continuity
we find that u1 ¼ 0. Substituting the zeroth order and first
order approximations into Eqs. (34a) and (34b) we get
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xz1
¼ Ta

1
2p2

Pr

24 A2
1Le2i xoctþqocxð Þ

d2
ocþ ixoc

Pr

� �
2q2

oc þ ixoc

Pr

� �þ A2
1Re2i xoct�qocxð Þ

d2
oc þ ixoc

Pr

� �
2q2

ocþ ixoc

Pr

� �
þ d2

ocA1LA	1Re2iqocx

q2
oc d4

ocþ
x2

oc

Pr2

� 
 þ c:c:

35;
xx1 ¼ 0; xy1 ¼ 0;
h1 ¼�p
jA1Lj2 þ jA1Rj2
� 


d2
oc

2p2 d4
oc þx2

oc

� � þ A1LA1Re2ixoc t

2p2 þ ixocð Þ d2
oc þ ixoc

� �þ c:c:

24 35;
v1 ¼

�iTa
1
2p2

2Prqoc

24 A2
1Le2i xoctþqocxð Þ

2q2
oc þ ixoc

Pr

� �
d2

oc þ ixoc

Pr

� �� A2
1Re2i xoc t�qocxð Þ

2q2
ocþ ixoc

Pr

� �
d2

ocþ ixoc

Pr

� �
þd2

oce
2iqocxA1LA	1Ra

q2
oc d4

ocþ
x2

oc

Pr2

� 
 � c:c:

35; ð56Þ

Eq. (53c) is solvable when L0w0 ¼ 0, one requires that its
right hand side be orthogonal to w0, which is ensured that
if the coefficients of sin pz in N1 �L2w0 are equal to zero.
This implies that

K0

oA1L

oT
þ K1

o

os
� vg

o

oX

� �
A2L � K2

o2A1L

oX 2
� K3A1L

þ K4jA1Lj2A1L þ K5jA1Rj2A1L ¼ 0; ð57aÞ

K0
oA1R

oT
þ K1

o

os
þ vg

o

oX

� �
A2R � K2

o
2A1R

oX 2
� K3A1R

þ K4jA1Rj2A1R þ K5jA1Rj2A1R ¼ 0; ð57bÞ
where

K0¼
2d2

oc

Pr
d2

ocþ ixoc

� �
d2

ocþ
ixoc

Pr

� �
þd2

oc d2
ocþ

ixoc

Pr

� �2

�Rocq2
oc

Pr
þTap2;

K1¼
d2

oc

Pr
1

Pr
d2

ocþ ixoc

� �
þ2 d2

ocþ
ixoc

Pr

� �� �
;

K2¼ 4q2
oc

(
2 d2

ocþ ixoc

� �
d2

ocþ
ixoc

Pr

� �
þ d2

ocþ
ixoc

Pr

� �2

þd2
oc d2

ocþ ixoc

� �
þ2d2

oc d2
ocþ ixoc

� �
�Roc

)

� v2
g

d2
oc

Pr
1

Pr
d2

ocþ ixoc

� �
þ2 d2

ocþ
ixoc

Pr

� �� �
þ2iqocvg

"
2

Pr
d2

ocþ ixoc

� �
d2

ocþ
ixoc

Pr

� �
þ 2

Pr
d2

oc d2
ocþ ixoc

� �
þ d2

ocþ
ixoc

Pr

� �2

þ2 1þ 1

Pr

� �
d2

oc d2
ocþ

ixoc

Pr

� �
�Roc

Pr

#

þd2
oc d2

ocþ
ixoc

Pr

� �2

þ d2
ocþ ixoc

� �
d2

ocþ
ixoc

Pr

� �2

þ2d2
oc d2

ocþ ixoc

� �
d2

ocþ
ixoc

Pr

� �
þTap2

�Rocq2
oc�Roc d2

ocþ
ixoc

Pr

� �
;

K3¼Rocq2
oc d2

ocþ
ixoc

Pr

� �
;

K4¼Rocq2
ocp

2 d2
ocþ

ixoc

Pr

� �
d2

oc

2p2 d4
ocþx2

oc

� �
�

2Tap4 d2
ocþ ixoc

� �
Pr2 d2

ocþ ixoc

Pr

� �
4q2

ocþ 2ixoc

Pr

� � ;
K5¼Rocq2

ocp
2 d2

ocþ
ixoc

Pr

� �
d2

oc

2p2 d4
ocþx2

oc

� �"

þ 1

d2
ocþ ixoc

� �
2p2þ ixocð Þ

#
� Tap4d2

oc

Pr2q2
oc d2

ocþ
x2

oc

Pr2

� 
 d2
ocþ ixoc

� �
:

ð58Þ

It should be noted that A1L;A1R are of order � and A2L;A2R

are of order �2. If xoc ¼ 0 in K0;K2;K3 and K4 then these
expressions match with the coefficients k0; k1; k2, and k3 of
Landau–Ginzburg equation at the onset of stationary
convection.

5.1. Travelling wave and standing wave convection

To study the stability regions of travelling waves and
standing waves we proceed as follows:

On dropping slow space variable X and slow time vari-
able s from Eqs. (57a) and (57b), we get a pair of first order
ODE’s

dA1L

dT
¼ K3

K0

A1L �
K4

K0

A1LjA1Lj2 �
K5

K0

A1LjA1Rj2; ð59Þ

dA1R

dT
¼ K3

K0

A1R �
K4

K0

A1RjA1Rj2 �
K5

K0

A1RjA1Lj2: ð60Þ

Put

b ¼ K3

K0

; c ¼ �K4

K0

and d ¼ �K5

K0

:

Then Eq. (59) and (60) takes the following form

dA1L

dT
¼ bA1L þ cA1LjA1Lj2 þ dA1LjA1Rj2; ð61Þ

dA1R

dT
¼ bA1R þ cA1RjA1Rj2 þ dA1RjA1Lj2: ð62Þ

Consider A1L ¼ aLei/L and A1R ¼ aRei/R (we can write a
complex number in the amplitude and phase (angle) form),

where aL ¼ jA1Lj;/L ¼ argðA1LÞ ¼ tan�1 ImðA1LÞ
ReðA1LÞ

� 

and aR ¼

jA1Rj;/R ¼ argðA1RÞ ¼ tan�1 ImðA1RÞ
ReðA1RÞ

� 

:aL; aR;/L;/R are

functions of time T since A1L and A1R are functions of T.
Thus aL and aR are positive functions.

Substituting the definitions of A1L and A1R and
b ¼ b1 þ ib2; c ¼ c1 þ ic2; d ¼ d1 þ id2 into Eqs. (61) and
(62), we get
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daL

dT
¼ b1aL þ c1aLjaLj2 þ d1aLjaRj2; ð63Þ

d/L

dT
¼ b2 þ c2jaLj2 þ d2jaRj2; ð64Þ

daR

dT
¼ b1aR þ c1aRjaRj2 þ d1aRjaLj2; ð65Þ

d/R

dT
¼ b2 þ c2jaRj2 þ d2jaLj2: ð66Þ

Eqs. (63) and (65) not contain phase term, so we take these
two equations for the future discussions. We have Eqs. (63)
and (65) as

daL

dT
¼ b1aL þ c1a3

L þ d1aLa2
R;

daR

dT
¼ b1aR þ c1a3

R þ d1aRa2
L;

since aL and aR are positive functions. Put

daL

dT
¼ F 1ðaL; aRÞ;

daR

dT
¼ F 2ðaL; aRÞ ð67Þ

Now we discuss the stability of equilibrium points of above
Eq. (67). We get four equilibrium points like
ðaL; aRÞ ¼ ð0; 0Þ [conduction state], ðaL; aRÞ ¼ ðaL; 0Þ
[aL = amplitude of left travelling waves, here we get
F2 = 0, and we get one condition from F1 = 0, i.e.,
Fig. 4. (a), (b) and (c) are typical diagrams showing the stability of equilibri
waves). On solid lines equilibrium solutions are stable and on dotted lines the
a2
L ¼ �

b1

c1
ð¼ jA1Lj2Þ�; ðaL; aRÞ ¼ ð0; aRÞ [aR = amplitude of

right travelling waves, here F1 = 0 and from F2 = 0, we
get a2

R ¼ �
b1

c1
ð¼ jA1Rj2Þ], and for aL 6¼ 0 and aR 6¼ 0 we

get ðaL; aRÞ ¼ � b1

ðc1þd1Þ
;� b1

ðc1þd1Þ

� 

[this gives condition for

standing waves. At standing waves we have A1L ¼ A1R, so
aL ¼ aR]. For the pair of Eqs. (59) and (60), we do not
get aL 6¼ aR 6¼ s0 [modulated waves].

Now the Jacobian of F1 and F2 is given by

oF 1

oaL

oF 1

oaR

oF 2

oaL

oF 2

oaR

0BB@
1CCA:

If real parts of all eigenvalues of the Jacobian are negative
at an equilibrium point, then that point is a stable equilib-
rium [Lyapounov’s theorem or principle of linearized sta-
bility]. Some valuable conditions for travelling waves and
standing waves are: Travelling waves are stable if
b1 > 0; c1 < 0 and d1 < c1 < 0. Standing waves are stable
if b1 > 0; c1 < 0 and (i) if d1 > 0, then �c1 > d1 > 0, (ii) if
d1 < 0, then �c1 > �d1 > 0.

The stability regions of travelling waves and standing
waves are summarized in Fig. 4. Here E is total amplitude
and defined as E ¼ a2

L þ a2
R. We do not distinguish between

left travelling waves and right travelling waves. For rest
um solutions SS (steady state), SW (standing waves) and TW (travelling
y are unstable.



Fig. 5. Above stability diagram is plotted in ðTa; PrÞ plane.
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state (steady state) E = 0, for travelling waves E ¼ �b1

c1
, for

standing waves E ¼ �2b1

c1þf1
. Travelling waves are supercritical

if c1 < 0 and standing waves are supercritical if c1 þ f1 < 0.
Fig. 4a is drawn for stable travelling wave conditions and
Fig. 4b is drawn for stable standing wave conditions
in ðb1;EÞ-plane. The symbols ð�;�Þ and ðþ;�Þ in
Fig. 4(a, b) indicate that both two roots of Jacobian are
negative and atleast one root is positive among two roots.
In Fig. 4(a, b), travelling wave solution and standing wave
solution bifurcate simultaneously from the steady state
solution (b1 P 0 at this bifurcation point). In these
Fig. 4(a, b), steady state solution is stable for b1 < 0 and
unstable for b1 > 0. These figures shows that for b1 > 0
both travelling waves and standing waves are supercritical.
When travelling waves and standing waves bifurcate super-
critically then atmost one solution among travelling waves
and standing waves will be stable. Thus, for b1 > 0
(Fig. 4a) travelling waves are stable and (Fig. 4b) standing
waves are stable. In more detail we reproduce results of the
stability analysis of equilibrium solutions in Fig. 4c, which
is plotted in ðc1; f1Þ-plane. From this figure we can observe
that travelling waves are subcritical for c1 > 0 and standing
waves are subcritical for c1 þ f1 > 0.

In Fig. 5, we have shown the stability regions for both
travelling wave and standing wave for Pr � 1. It suggest
that if travelling waves seen at onset for some values of
Pr and Ta, for this fixed Ta as Pr varies then they (travel-
ling waves) loose stability to standing waves soon after the
initial bifurcation and vice-versa.
6. Conclusions

We have revisited linear problem of Rayleigh–Benard
convection in rotating fluid with the so-called stress-free
or free–free boundary conditions and studied nonlinear
Rayleigh–Benard convection in rotating fluid near onset
of the stationary convection at supercritical pitchfork
bifurcation and near onset of oscillatory convection at
super critical Hopf bifurcation. Chandrasekhar [4]
described the stationary convection and oscillatory convec-
tion curves in the R; Ta-plane as curves RsðTaÞ and
R0ðTa; PrÞ respectively. In Section 3, we have obtained
explicitly Takens–Bogdanov bifurcation point which is
the intersection point of the neutral curves corresponds
to stationary and oscillatory convection.

In the nonlinear Eq. (36), k0 ¼ 0 gives the condition at
the Takens–Bogdanov bifurcation point. The pitchfork
bifurcation is supercritical if k3 > 0 and subcritical if
k3 < 0. We have computed stability regions of SW and
TW at both Hopf bifurcation. The conditions for SW
and TW are A1L ¼ A1R and A1L ¼ 0 or A1R ¼ 0, respec-
tively. TW exist if jA1Rj2 ¼ � b1

c1
> 0 and they are supercrit-

ical if c1 < 0. SW exist if jA1Lj2 ¼ jA1Rj2 ¼ � b1

c1þf1
> 0 and

SW are supercritical if c1 þ f1 < 0. When both SW and
TW are supercritical then at most one equilibrium solution
is stable. If we substitute xoc ¼ 0 in the coefficients of Eqs.
(57a) and (57b), we get the coefficients of Eq. (36).
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